

Christopher Cover

MacOS Admin
AKA: CMO

William Paterson University

coverc@wpunj.edu

WPUNJ Open Sourced

Mac Support :

Munki, Autopkg, Munki Web
Admin, Reposado, terminal-

notifier

Overview

 Munki: Managed Software Center (MSC). Used
to deploy software and system configurations.

 Autopkg: Automate the packaging of
frequently updated standard software for
Munki.

 MunkiWebAdmin: Web console for client
reporting

 Reposado: Local mirror of Apple updates.
 Terminal-notifier: notification center style

notices for MSC updates.

Cost Effective

 None of these items require any licenses to
obtain or run. Saves institution and taxpayer
money.

 Give a bonus to your admin. :-D

Pre Munki

 Before Munki we were using RADMIND
 Remote Administrator

Pros of RADMIND

 Tripwire system: Keeps machines in a known
state. Great for unchanging labs.

 Automatically removes unwanted,
unauthorized installations and hacked files.

 Only needed the space required for update.

Cons of RADMIND

 All installed software must be known
 ahead of time.
 Users are unable to install software into root

Applications directory.
 Easy to break machines with ill-prepared

transcripts.
 Generally not flexible.

Cons of RADMIND

 Then came the Apple App Store.

Goals for implementing
Munki

 Keep Standard OS and Software up to date.
 Allow users to install applications without

admin privileges.
 Ability to know the status of any machine.
 Ability to remove unauthorized applications.

WPUNJ Munki Setup

 Managed Software Center Client.
 Apache Web Server.
 Reposado Apple Update Mirror.
 MunkiWebAdmin Console for admin.

Managed Software Center

 Munki (Managed Software Center) may be
obtained from:

 https://github.com/munki/munki
 Created by Greg Neagle at Disney Corp.
 As a standard pkg installer you can deploy it

via whatever deployment method you use or
bake into your standard image.

 We used RADMIND to install on previously
deployed clients.

Managed Software Center

 MSC requires a preference file(ManagedInstalls.plist)

 <key>ClientIdentifier</key>
 <string>CH110-Test iMac</string>
 <key>DaysBetweenNotifications</key

>
 <integer>2</integer>

Managed Software Center

 <key>InstallAppleSoftwareUpdates</
key>

 <true/>
 <key>LogFile</key>
 <string>/Library/Managed

Installs/Logs/ManagedSoftwareUpdat
e.log</string>

 <key>LoggingLevel</key>
 <integer>1</integer>

<key>ManagedInstallDir</key>

Managed Software Center

 <key>SuppressAutoInstall</key>
 <false/>
 <key>SuppressStopButtonOnInstall</key>
 <false/>
 <key>SuppressUserNotification</key>
 <false/>

Managed Software Center
User Facing Application

Managed Software Center
Pending Updates Window

Managed Software Center
Server

 Any HTTP server. (we use OS X Server
Apache).

 Required folders:
 Manifests
 Catalogs
 Pkgs
 Pkgsinfo
 Optional:
 Icons -Icons for installers
 client_resources – customized header

Munki Manifests

 Manifests are how machines know what to
install, update and remove.

 This is the best way to customize and
modularize your update system.

 Manifests can (and should) be nested.

Munki Manifests

 By breaking up manifests we can direct
software and updates to specific groups
without having to manipulate each computer
manifest individually.

 We are able to direct software and settings to
labs or faculty.

 We can keep limited license software away
from “public”.

Munki Manifests...Example

 <key>catalogs</key>
 <array>
 <string>production</string>
 </array>
 <key>included_manifests</key>
 <array>
 <string>WPU_App_Kit</string>
 <string>WPUNJ Optional Installs</string>
 <string>WPU_SEP_FAC</string>
 <string>WPU_Publications_Kit</string>
 </array>

Enforcing Policy
with Munki

 One of our included manifests has the
following:

 <key>managed_installs</key>
 <array>
 <string>Remount WPU-Folders Agent</string>
 <string>Munki Notifier</string>
 <string>Symantec Endpoint Protection

UNV</string>
 <string>Block OS X Install</string>
 </array>

Enforcing Policy
with Munki

 Block OS X Install: OS updates should only
occur when authorized by IT. Many people
given admin privileges ignore this policy.

 So our software blocks the App Store
download.

 Once we approve OS updates we remove the
block.

 <key>managed_uninstalls</key>
 <array>
 <string>Block OS X Install</string>
 </array>

Enforcing Policy
with Munki

 Example: Keep SSH enabled:
 <key>installcheck_script</key>
 <string>#!/bin/sh
 SYSOS=`sudo sw_vers -productVersion | cut -d

"." -f2`
 SSH_Access_Exists=false
 echo "checking remote login status.."
 SSHon=`sudo systemsetup -getremotelogin |

awk '/Remote Login/ {print $3}'`

Enforcing Policy
with Munki

 echo $MN" has had SSH re-enabled."
 mail -s "Enable SSH Notification"

coverc@wpunj.edu -- -F$MN -
fcoverc@wpunj.edu < $SSHLog

 exit 1 ;;

 If a user, given admin privileges disables

remote access it is reported to IT for follow up.
 This also means we don’t have to send staff to

re-image or reset a machine.

AutoPkg

 Available from:
 https://autopkg.github.io/autopkg/
 This software will automatically download and

package software for your Munki repository.
 You can customize the “recipies” to reflect your

settings. For example: rather than putting
software into “apps” you may use “AppName”
or “ManufacturerName”.

https://autopkg.github.io/autopkg/

AutoPkg

 Sample “Recipe” snippet:
 <dict>
 <key>NAME</key>
 <string>Microsoft Word 2016</string>
 <key>MUNKI_REPO_SUBDIR</key>
 <string>Office 2016</string>
 <key>pkginfo</key>

AutoPkg

 Sample “recipe” snippet:
 <dict>
 <key>blocking_applications</key>
 <array>
 <string>Microsoft Word</string>
 <string>Microsoft Error

Reporting</string>
 <string>Microsoft Auto

Update</string>
 </array>

AutoPkg

 Sample “Recipe” snippet:
 <key>name</key>
 <string>%NAME%</string>
 <key>unattended_install</key>
 <true/>
 <key>update_for</key>
 <array>
 <string>Microsoft Office 2016</string>
 </array>

AutoPkg

 Why Use AutoPkg: You don’t spend your time
looking for latest updates and packaging them.

 They are waiting for your testing and approval
every morning (or whenever you decide

 to run it).
 Suggestion: Don’t run it on your main Munki

repo machine.

Reposado

 Available here:
 https://github.com/wdas/reposado
 Host Apple Software Updates on HW and OS

of your choice.
 Rather than allow machines to talk directly to

Apple for updates which may break university
items, update from internal server.

 Hosted on same OS X Server with Apache as
our Munki repository.

https://github.com/wdas/reposado

Reposado

 Beware of “secret” Apple updates:
− Gatekeeper
− Xprotect

 These items are usually silently installed by
Apple’s software update. These files need to be
manipulated in the Reposado repo to install
with MSC.

 Failure to do so will result in Macs not having
the latest Gatekeeper and Xprotect files.

Reposado

 Example:
 Apple released a Xprotect file that disabled

ethernet ports. Had we taken updates directly
from Apple we would have had all of our labs
and faculty machines go down AND require
personnel to visit each one.

Reposado

 Web Interface for Reposado (Margarita):

MunkiWebAdmin

 Web based tool that has reporting features.
 Available from:
 https://github.com/munki/munkiwebadmin
 Runs on any POSIX compliant UNIX system.
 3 files required to be installed on client

(/usr/local/munki/):
 -postflight
 -preflight
 -report_broken_client

https://github.com/munki/munkiwebadmin

MunkiWebAdmin
Web interface home screen

MunkiWebAdmin
Client machine details

Terminal Notifier

 Available here:
 https://github.com/julienXX/terminal-notifier
 Users have a tendency to put off updates

indefinitely.
 Munki allows us to force updates to occur by a

certain date and time but sometimes we don’t
want to be that aggressive.

https://github.com/julienXX/terminal-notifier

Terminal Notifier

 Terminal Notifier allows us to access apple’s
notification center and periodically remind a
user that there are items to update.

Fin

Munki, Autopkg,
Munki Web Admin,

 Reposado,
terminal-notifier

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40

